Analysis of Score Normalization in Multilingual Speaker Recognition

نویسندگان

  • Pavel Matejka
  • Ondrej Novotný
  • Oldrich Plchot
  • Lukás Burget
  • Mireia Díez Sánchez
  • Jan Cernocký
چکیده

NIST Speaker Recognition Evaluation 2016 has revealed the importance of score normalization for mismatched data conditions. This paper analyzes several score normalization techniques for test conditions with multiple languages. The best performing one for a PLDA classifier is an adaptive s-norm with 30% relative improvement over the system without any score normalization. The analysis shows that the adaptive score normalization (using top scoring files per trial) selects cohorts that in 68% contain recordings from the same language and in 92% of the same gender as the enrollment and test recordings. Our results suggest that the data to select score normalization cohorts should be a pool of several languages and channels and if possible, its subset should contain data from the target domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Source normalization for language-independent speaker recognition using i-vectors

Source-normalization (SN) is an effective means of improving the robustness of i-vector-based speaker recognition for under-resourced and unseen cross-speech-source evaluation conditions. The technique of source-normalization estimates directions of undesired within-speaker variation more accurately than traditional methods when cross-source variation is not explicitly observed from each speake...

متن کامل

A PLDA approach for language and text independent speaker recognition

There are many factors affecting the variability of an i-vector extracted from a speech segment such as the acoustic content, segment duration, handset type and background noise. The state-of-the-art Probabilistic Linear Discriminant Analysis (PLDA) aims at modelling all these sources of undesirable variability within a single covariance matrix. Although techniques such as source normalization ...

متن کامل

Blind score normalization method for PLDA based speaker recognition

Probabilistic Linear Discriminant Analysis (PLDA) has become state-of-the-art method for modeling i-vector space in speaker recognition task. However the performance degradation is observed if enrollment data size differs from one speaker to another. This paper presents a solution to such problem by introducing new PLDA scoring normalization technique. Normalization parameters are derived in a ...

متن کامل

Analysis of mutual duration and noise effects in speaker recognition: benefits of condition-matched cohort selection in score normalization

The biometric and forensic performance of automatic speaker recognition systems degrades under noisy and short probe utterance conditions. Score normalization is an effective tool taking into account the mismatch of reference and probe utterances. In an adaptive symmetric score normalization scheme for state-ofthe-art i-vector recognition systems, a set of cohort speakers are employed to calcul...

متن کامل

A Review of Various Score Normalization Techniques for Speaker Identification System

This paper presents an overview of a state-of-the-art text-independent speaker verification system using score normalization. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization used in speaker verification, namely, cepstral analysis, is detailed. Normalization of scores is then explai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017